
Static Scheduling of Parallel Tasks
- A Quick Review -

Hiroyuki Tomiyama

Ritsumeikan University
http://hiroyuki.tomiyama-lab.org/

MPSoC 2019

 Problem
 Given: task graph, # cores
 Goal: minimization of schedule length

 NP-hard complexity
 Many algorithms developed

 List scheduling, SA, GA, B&B, ILP, etc.
 Heuristic algorithms try to execute as many tasks as possible

simultaneously on different cores

2

Classic Task Scheduling on Multicores

E

S

1 3

4 5

(20)

(10)

(20)

(30)

2 (5) T1 T4

T3 T2

50

T5 time

Core 1

Core 0

0

Execution time

 Inter-task communication
 Buses, NoCs, etc.

 Heterogeneous cores
 Dynamic power management
 Dynamic voltage and frequency scheduling
 Probabilistic execution times of tasks
 Resource conflicts among running tasks

 memory, buses, I/O, etc.
 Conditional task graphs
 Pipelined scheduling
 Deadline constraints for individual tasks
 Multiple task graphs with different execution rates
 Intra-task data parallelism

 Individual tasks may run on multiple cores
 Much more

Lots of Extensions

3

 In many application domains such as multimedia, individual tasks have
inherent data parallelism

 A task can be split into multiple threads (sub-tasks) to allow data
parallel execution in a fork-join manner

 No extension is necessary in scheduling algorithms

4

Fork-Join Parallel Tasks

E

S

1_pre

(5)
3

(20)

5
(10)

2
(5)

1_
pre

3 2

45

5 time

Core 1

Core 0

0

1_post

(5)

1_1

(5)

1_2

(5)
4_pre

(5)

4_post

(5)

4_1

(10)

4_2

(10)

E

S

1 3

4 5

(20)

(10)

(20)

(30)

2 (5)

1_
post

1_1 1_2
4_
pre

4_
post

4_1

4_2

T1 T4

T3 T2

50

T5 time

Core 1

Core 0

0

 Sub-tasks may communicate and synchronize with each other very frequently
 Such sub-tasks need to be executed in parallel at the same time
 Several algorithms extended

 List scheduling, B&B, GA, etc.
 Yang Liu, Scheduling Algorithms for Data-Parallel Tasks on Multicore Architectures, Ph.D.

thesis, Ritsumeikan University, 2018.

5

Synchronous Parallel Tasks

E

S

1_pre

(1,5)
3

(1,20)

5
(1,10)

2
(1,5)

1_post

(1,5)

1

(2,5)
4_pre

(1,5)

4_post

(1,5)

4

(2,10)

E

S

1_pre

(5)
3

(20)

5
(10)

2
(5)

1_post

(5)

1_1

(5)

1_2

(5)
4_pre

(5)

4_post

(5)

4_1

(10)

4_2

(10)

(# cores, execution time)
1_
pre

3

2

50

5 time

Core 1

Core 0

0

1_
post

1

4_
pre

4_
post

4

1_
pre

3 2

45

5 time

Core 1

Core 0

0

1_
post

1_1 1_2
4_
pre

4_
post

4_1

4_2

Classification of Multicore Task Scheduling

6

Scheduling

Sequential tasks
(Single-threaded tasks)

Parallel tasks
(Multi-threaded tasks)

Fork-join parallelism Synchronous parallelism

 For each task, who decides the number of sub-tasks,
and how?

 Ideal case

All tasks are parallelizable and scalable

Best schedule is
Assign all cores to the tasks

 Schedule the tasks sequentially

7

Question

cores

Pe
rf

o
rm

an
ce

(1
 /

 e
xe

cu
ti

o
n

 t
im

e)

E

S

1 2

cores Task 1 Task 2

1 36 24

2 18 12

3 12 8

4 9 6

1

1

15

time

Core 1

Core 0

0

1

1

Core 2

Core 3

2

2

2

2

9

Execution time

 For each task, who decides the number of sub-tasks, and
how?

 Reality
 Performance of parallel processing is rarely

proportional to the number of cores
 The number of sub-tasks should be determined at the

same time as task scheduling
 Malleable (or moldable) task scheduling

8

Question

E

S

1 2

cores Task 1 Task 2

1 36 24

2 28 18

3 22 14

4 18 12

1

1

24

Core 1

Core 0

0

1Core 2

Core 3 2

Execution time

cores

Pe
rf

o
rm

an
ce

(1
 /

 e
xe

cu
ti

o
n

 t
im

e)

Classification of Multicore Task Scheduling

9

Scheduling

Sequential tasks
(Single-threaded tasks)

Parallel tasks
(Multi-threaded tasks)

Fixed parallelism Malleable parallelism

Fork-join Synchronous Fork-join Synchronous

Experiments on Malleable Task Scheduling

 Our approach
 Constraint programming
 IBM CP Optimizer

 CPU time limited to 10 hours

 Benchmark task graphs
 TGFF (task graph for free)
 STG (standard task graphs) from Waseda

University

 Compared methods
 Single

 Single core for each task

 Max
 All cores for each task, sequential order

 MS
 Malleable synchronous scheduling

 MFJ
 Malleable fork-join scheduling

10

2.04

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

 (
6

)

tg
ff

 (
1

1
)

tg
ff

 (
1

7
)

tg
ff

 (
2

4
)

tg
ff

 (
3

0
)

st
g-

ra
n

d
0

 (
5

0
)

st
g-

ra
n

d
1

 (
5

0
)

st
g-

ra
n

d
2

 (
5

0
)

st
g-

ra
n

d
3

 (
5

0
)

st
g-

ra
n

d
4

 (
5

0
)

st
g-

ra
n

d
5

 (
5

0
)

st
g-

ra
n

d
6

 (
5

0
)

st
g-

ra
n

d
7

 (
5

0
)

st
g-

ra
n

d
8

 (
5

0
)

st
g-

ra
n

d
9

 (
5

0
)

st
g-

ro
b

o
t

(8
8

)

st
g-

sp
ar

se
 (

9
6

)

st
g-

fp
p

p
p

 (
3

3
4

)

Schedule length on 32 cores

Single Max MS MFJ2.48

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

 (
6

)

tg
ff

 (
1

1
)

tg
ff

 (
1

7
)

tg
ff

 (
2

4
)

tg
ff

 (
3

0
)

st
g-

ra
n

d
0

 (
5

0
)

st
g-

ra
n

d
1

 (
5

0
)

st
g-

ra
n

d
2

 (
5

0
)

st
g-

ra
n

d
3

 (
5

0
)

st
g-

ra
n

d
4

 (
5

0
)

st
g-

ra
n

d
5

 (
5

0
)

st
g-

ra
n

d
6

 (
5

0
)

st
g-

ra
n

d
7

 (
5

0
)

st
g-

ra
n

d
8

 (
5

0
)

st
g-

ra
n

d
9

 (
5

0
)

st
g-

ro
b

o
t

(8
8

)

st
g-

sp
ar

se
 (

9
6

)

st
g-

fp
p

p
p

 (
3

3
4

)

Schedule length on 16 cores

Single Max MS MFJ

 In OpenCL, data is split into work-items

 A work-item is the minimum unit of parallel execution

 On GPU, a work-item corresponds to a thread

 Our OpenCL framework aggregates work-items to form the user-
specified number of threads

 A thread has a for-loop to iteratively process the work-items

 We are now working on automatic optimization of the number of
threads

11

Our OpenCL Framework for Multicores

 Task scheduling should take account of both inter-task parallelism
and intra-task parallelism in order to take advantage of manycore
architecture

 The degree of intra-task parallelism (the number of cores for
each task) should be determined at the same time as task
scheduling

 Future work

 Lots of extensions
 Communication, heterogeneous cores, DPM, DVFS, probabilistic

execution times, resource conflicts, deadline constraints, and more

Online task scheduling with online learning

12

Summary

