
Static Scheduling of Parallel Tasks
- A Quick Review -

Hiroyuki Tomiyama

Ritsumeikan University
http://hiroyuki.tomiyama-lab.org/

MPSoC 2019



 Problem
 Given: task graph, # cores
 Goal: minimization of schedule length

 NP-hard complexity
 Many algorithms developed

 List scheduling, SA, GA, B&B, ILP, etc.
 Heuristic algorithms try to execute as many tasks as possible 

simultaneously on different cores

2

Classic Task Scheduling on Multicores

E

S

1 3

4 5

(20)

(10)

(20)

(30)

2 (5) T1 T4

T3 T2

50

T5 time

Core 1

Core 0

0

Execution time



 Inter-task communication
 Buses, NoCs, etc.

 Heterogeneous cores
 Dynamic power management
 Dynamic voltage and frequency scheduling
 Probabilistic execution times of tasks
 Resource conflicts among running tasks

 memory, buses, I/O, etc.
 Conditional task graphs
 Pipelined scheduling
 Deadline constraints for individual tasks
 Multiple task graphs with different execution rates
 Intra-task data parallelism

 Individual tasks may run on multiple cores
 Much more

Lots of Extensions

3



 In many application domains such as multimedia, individual tasks have 
inherent data parallelism

 A task can be split into multiple threads (sub-tasks) to allow data 
parallel execution in a fork-join manner

 No extension is necessary in scheduling algorithms

4

Fork-Join Parallel Tasks

E

S

1_pre

(5)
3

(20)

5
(10)

2
(5)

1_
pre

3 2

45

5 time

Core 1

Core 0

0

1_post

(5)

1_1

(5)

1_2

(5)
4_pre

(5)

4_post

(5)

4_1

(10)

4_2

(10)

E

S

1 3

4 5

(20)

(10)

(20)

(30)

2 (5)

1_
post

1_1 1_2
4_
pre

4_
post

4_1

4_2

T1 T4

T3 T2

50

T5 time

Core 1

Core 0

0



 Sub-tasks may communicate and synchronize with each other very frequently
 Such sub-tasks need to be executed in parallel at the same time
 Several algorithms extended

 List scheduling, B&B, GA, etc.
 Yang Liu, Scheduling Algorithms for Data-Parallel Tasks on Multicore Architectures, Ph.D. 

thesis, Ritsumeikan University, 2018.

5

Synchronous Parallel Tasks

E

S

1_pre

(1,5)
3

(1,20)

5
(1,10)

2
(1,5)

1_post

(1,5)

1

(2,5)
4_pre

(1,5)

4_post

(1,5)

4

(2,10)

E

S

1_pre

(5)
3

(20)

5
(10)

2
(5)

1_post

(5)

1_1

(5)

1_2

(5)
4_pre

(5)

4_post

(5)

4_1

(10)

4_2

(10)

(# cores, execution time)
1_
pre

3

2

50

5 time

Core 1

Core 0

0

1_
post

1

4_
pre

4_
post

4

1_
pre

3 2

45

5 time

Core 1

Core 0

0

1_
post

1_1 1_2
4_
pre

4_
post

4_1

4_2



Classification of Multicore Task Scheduling

6

Scheduling

Sequential tasks
(Single-threaded tasks)

Parallel tasks
(Multi-threaded tasks)

Fork-join parallelism Synchronous parallelism



 For each task, who decides the number of sub-tasks, 
and how?

 Ideal case

All tasks are parallelizable and scalable

Best schedule is
Assign all cores to the tasks

 Schedule the tasks sequentially

7

Question

# cores

Pe
rf

o
rm

an
ce

(1
 /

 e
xe

cu
ti

o
n

 t
im

e)

E

S

1 2

# cores Task 1 Task 2

1 36 24

2 18 12

3 12 8

4 9 6

1

1

15

time

Core 1

Core 0

0

1

1

Core 2

Core 3

2

2

2

2

9

Execution time



 For each task, who decides the number of sub-tasks, and 
how?

 Reality
 Performance of parallel processing is rarely 

proportional to the number of cores
 The number of sub-tasks should be determined at the 

same time as task scheduling
 Malleable (or moldable) task scheduling

8

Question

E

S

1 2

# cores Task 1 Task 2

1 36 24

2 28 18

3 22 14

4 18 12

1

1

24

Core 1

Core 0

0

1Core 2

Core 3 2

Execution time

# cores

Pe
rf

o
rm

an
ce

(1
 /

 e
xe

cu
ti

o
n

 t
im

e)



Classification of Multicore Task Scheduling

9

Scheduling

Sequential tasks
(Single-threaded tasks)

Parallel tasks
(Multi-threaded tasks)

Fixed parallelism Malleable parallelism

Fork-join Synchronous Fork-join Synchronous



Experiments on Malleable Task Scheduling

 Our approach
 Constraint programming
 IBM CP Optimizer

 CPU time limited to 10 hours

 Benchmark task graphs
 TGFF (task graph for free)
 STG (standard task graphs) from Waseda

University

 Compared methods
 Single

 Single core for each task

 Max
 All cores for each task, sequential order

 MS
 Malleable synchronous scheduling

 MFJ
 Malleable fork-join scheduling

10

2.04 

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

 (
6

)

tg
ff

 (
1

1
)

tg
ff

 (
1

7
)

tg
ff

 (
2

4
)

tg
ff

 (
3

0
)

st
g-

ra
n

d
0

 (
5

0
)

st
g-

ra
n

d
1

 (
5

0
)

st
g-

ra
n

d
2

 (
5

0
)

st
g-

ra
n

d
3

 (
5

0
)

st
g-

ra
n

d
4

 (
5

0
)

st
g-

ra
n

d
5

 (
5

0
)

st
g-

ra
n

d
6

 (
5

0
)

st
g-

ra
n

d
7

 (
5

0
)

st
g-

ra
n

d
8

 (
5

0
)

st
g-

ra
n

d
9

 (
5

0
)

st
g-

ro
b

o
t 

(8
8

)

st
g-

sp
ar

se
 (

9
6

)

st
g-

fp
p

p
p

 (
3

3
4

)

Schedule length on 32 cores

Single Max MS MFJ2.48 

0

0.2

0.4

0.6

0.8

1

1.2

tg
ff

 (
6

)

tg
ff

 (
1

1
)

tg
ff

 (
1

7
)

tg
ff

 (
2

4
)

tg
ff

 (
3

0
)

st
g-

ra
n

d
0

 (
5

0
)

st
g-

ra
n

d
1

 (
5

0
)

st
g-

ra
n

d
2

 (
5

0
)

st
g-

ra
n

d
3

 (
5

0
)

st
g-

ra
n

d
4

 (
5

0
)

st
g-

ra
n

d
5

 (
5

0
)

st
g-

ra
n

d
6

 (
5

0
)

st
g-

ra
n

d
7

 (
5

0
)

st
g-

ra
n

d
8

 (
5

0
)

st
g-

ra
n

d
9

 (
5

0
)

st
g-

ro
b

o
t 

(8
8

)

st
g-

sp
ar

se
 (

9
6

)

st
g-

fp
p

p
p

 (
3

3
4

)

Schedule length on 16 cores

Single Max MS MFJ



 In OpenCL, data is split into work-items

 A work-item is the minimum unit of parallel execution

 On GPU, a work-item corresponds to a thread

 Our OpenCL framework aggregates work-items to form the user-
specified number of threads

 A thread has a for-loop to iteratively process the work-items

 We are now working on automatic optimization of the number of 
threads

11

Our OpenCL Framework for Multicores



 Task scheduling should take account of both inter-task parallelism 
and intra-task parallelism in order to take advantage of manycore 
architecture

 The degree of intra-task parallelism (the number of cores for 
each task) should be determined at the same time as task 
scheduling

 Future work

 Lots of extensions
 Communication, heterogeneous cores, DPM, DVFS, probabilistic 

execution times, resource conflicts, deadline constraints, and more

Online task scheduling with online learning

12

Summary


